
Cloth Animation with Collision Detection

Mara Guimar̃aes da Silva∗

Figure 1: Cloth blowing in the wind.

Abstract

This document reports the techniques and steps used to imple-
mented a physically based animation of cloth, which included
collision with objects and self collision. We also comment on the
difficulties encountered, and present some results.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realist—Animation I.3.5 [Computer Graphics]:
Computation Geometry and Object Modeling—Physically based
modeling

Keywords: cloth,collision detection, collision response, physi-
cally based animation

1 Introduction

Physically based simulations are an important tool in creating real-
istic animations. In the animation of cloth one of the main issues is
detecting and handling collisions. Since cloth is a deformable body
and all points are on the surface, each point has to potencial to col-
lide with the environment and with other points on the cloth at any
time step. Wrong collisions handling can result in cloth sticking out
from the wrong side.

For this project I had two goals. The first goal was to have a nice
cloth model, which would allow wrinkles. The second goal was to
properly handle collision with the environment, self-collision and
friction.

∗e-mail: mara.silva@gmail.com

2 Overview

This report is organized as following. First I discuss the cloth model
used, as well as another option that was explored. Then issues about
limiting cloth strain are discussed. Third we describe the accelera-
tion structure used during collion detection. We conclude describ-
ing the collision algorithm.

3 Cloth Model

For choosing a cloth model I look into two models: the spring-
mass model proposed by [Provot 1995], and the resposive cloth
described in [Choi and Ko 2002]. Following I briefly describe both
models.

3.1 Provot’s model

This mass-spring model is composed of particles connected
through springs. Figure 2 shows how these are layout.

Figure 2: Mass-spring model.

Particles have mass and are the recipient of forces. Particles also
have position and velocity. At each iteration new positions and



velocities are computed based on the forces applied to the particle.

Particles are connected through three different kinds of springs:

Structural springs. Deal with stretching. Connect neighbooring
particles in the horizontal and vertical direction. Structural springs
link particle [i,j] to particles [i+1,j] and [i,j+1].

Shear springs. Deal with shear. Connect neighbooring particles
in the diagonal direction. Shear springs link particle [i,j] to particle
[i+1,j+1], and particle [i+1,j] to particle [i,j+1].

Flexion springs.Deal with bending. Connect every other particles
in the horizontal direction and vertical directions. Flexion springs
link particle [i,j] to particles [i+2,j] and [i,j+2].

Each spring have constants which are used to compute the spring
and damper forces from the springs. The integration method
proposed is Euler integration.

3.2 Responsive model

This responsive model is described by [Choi and Ko 2002]. At
first this model looks very similar to Provot’s model since it is also
composed by particles and springs. The differences are the way the
springs connect the particles, and that different forces are applied
to different types of springs.

Type 1 connections connect all neighbooring particles. It corre-
sponds to structural and shear springs on Provot’s model. These
springs are responsible for stretching and shearing.

Type 2 connections connect every other particle. It corresponds to
the flexion springs on Provot’s model, but it also include particles
in the diagonal direction. These springs are responsible for flexural
and compression resistance.

Figure 3: Responsive model. Type 1 connections are red. Type 2
connections are blue.

Figure 3 illustrates the different connections. The responsive
model uses implicit integration.

3.3 Comparison

Provot’s model is fairly simple to implement, so it was my
starting choice. It gives nice results, but the Euler integration
scheme dictates small times steps. Also there are some strain issues
(discussed in section 4). I could resolve the time step issue using
a implicit integration method, as proposed by [Baraff and Witkin
1998], but I decided to further investigate [Choi and Ko 2002] for
their promise of allowing buckling without losing stability.

In the mass-spring model, since the forces are applied to all the
springs in the same manner, trying to get buckling effects results
in instability and the cloth explodes. Many times damping forces
are applied in order to mantain stability. What I like about the
responsive cloth model is that it applies different types of forces to
different types of spring. Also, the only damping force applied is
the intrisic damping property of fabrics. The result is a cloth with a
not-so-rubbery look, with many wrinkles.

The responsive cloth model also makes use of implicit integra-
tion. I found their integration very close to that describe in [Baraff
and Witkin 1998], the difference being that they use a second-order
difference formula.

3.4 Implementation: Final choice

My final choice was implementing responsive cloth. I should
quote [Baraff and Witkin 1998] saying that I ”wholeheartedly
refer the reader to [Shewchuk 1994] for information on the CG
method”. Unfortunately I could not get this model to work prop-
erly. I believe there is an implementatoin error in the computation
of the type 2 interactions, but I could not solve it on time. The
results I obtained were not stable, and also a hanging cloth shrinks
in the bottom (where there are no constraints). Even though I
prefered the responsive model, my final implementation uses the
mass-spring model.

4 Limiting Strain

Sometimes a spring is compressed or stretched more than 10% of
its rest length, which is not a realistic cloth behavior. To deal with
this issue, two methods were investigated.

4.1 Position method

[Provot 1995] proposed a simple an efficient method to limit
strain. After an iteration all the springs are checked for deformation.
If a spring length exceeds its natural length by more than 10%, the
position of the particles linked by this spring are adjusted so that
the adjusted length is within this 10% limit.

4.2 Velocity method

[Bridson et al. 2002] method is similar to Provot’s method.
The difference it that instead of changing particles positions,
momentum-conserving corrective impulses are applied.

4.3 Comparison

Using the velocity method allows to have correct positions and
corresponding velocities. Comparing a non-limited cloth and a
position-limited cloth leads to two conclusions: the limited cloth
conserves its size but it has a rubbery look, as shown in figure 4.

The velocity method seems a promising choice. [Bridson et al.
2002] proposes that this limiting procedure should be applied using
a Jacobi iteration approach. Unfortunately I could not make it work
well for my final implementation.



Figure 4: Unlimited vs Limited-strain cloth. Cloth on the right is
limited using position method. Cloth on the left is not limited (blue
represent springs that are stretched more than 10% from their rest
length.

The state of the cloth after this limiting strain stage is the input
for the collision algorithm. Since the velocities and positions using
Provot’s method do not correspond, I could not use this method to-
gether with the collision algorithm (the cloth explodes after some
iterations).

5 Acceleration Structure

Collision detection is known as the major bottleneck in cloth sim-
ulations. To check for potential cloth collisions one should check
all points in the cloth with all objects in the environment, and also
each points in the clock with all other points in itself. This process
is extremelly slow.

A acceleration structure is used to eliminate unnecessary testing.
I implemented an axis-aligned bounding boxes tree. Figure 6 show
how only a small part of the tree was tested during the collision
test between the cloth and the gray triangle. This image shows the
boxes that did not need to be tested.

Figure 5: AABB tree in use. Green boxes represent the tree nodes
that were not tested during the time step.

5.1 AABB tree for cloth.

The tree is built bottom-up in the beginning of the simulation. It
starts by wraping each triangle with a bounding box. Then I took
advantage of the uniform distribution of my cloth implementation
and pair up triangles that have the same bounding box and compute
their parent node. Next I pair up neighbooring boxes in the horizon-
tal direction, and then in the vertical direction, successively, until I
was left with only one node.

At each iteration, since the triangles move, the structure needs to
be recomputed. It is not necessary to build the tree again, only up-
date it. The update process is made bottom-up, updating the leafs,
then its parents, and so on.

5.2 AABB tree for meshes.

The objects in the environment are represented by meshes, which
can have many triangles. I decided to apply an AABB hierarchy to
the rigid objects in the scene in order to efficiently test for collision.

The AABB tree for rigid objects are build top-down, since I do not
have information about the triangles distribution. I constructed the
tree following the description in [van den Bergen 1997]. Update
are necessary only if the rigid object is moving, and should be done
in the same way as the update for cloth.

6 Intersection Testing

Before explaining the collision algorithm, I am going to comment
on the collision tests I implemented for this project. Collision were
detected using edge-edge and point-triangle proximity tests, and
also a trajectory projection test.

6.1 Point-Triangle proximity test.

To test if a pointp is closer to a trianglet1t2t3 than a certain distance
h, I first compute the distance of the point from the triangle plane.
If the distanced is smaller thanh I project the point into the triangle
plane and compute the barycentric coordinates. If the barycentric
coordinates are inside the triangle than a collision is recorded.

6.2 Edge-Edge proximity test.

To check if an edgee1e2 is closer to an edgef1 f2 than a certain
distanceh, I implemented the distance between segments test de-
scribed in [Sunday ].

6.3 Geometric collision test.

Given four points and their velocities, the geometric collision test
consist in determing the timet when the four points are coplanar. If
t is inside the current time step, a proximity test is performed using
the position of the points att.

Given points~x1,~x2,~x3,~x4, their velocities~v1,~v2,~v3,~v4, and defin-
ing~xi j =~xi −~x j , the timet when the points will be coplanar are the
roots of the cubic equation [Provot 1997],

(~x21+ t~v21)× (~x31+ t~v31) · (~x41+ t~v41) = 0



To solve the cubic equation

a3t3 +a2t2 +a1t +a0 = 0

where

a3 = fxk+ fyl + fzm

a2 = exk+eyl +ezm+ fxn+ fyo+ fzp

a1 = exn+eyo+ezp+ fxq+ fyr + fzs

a0 = exq+eyr +ezs

and

a = ~x21

b = ~v21

c = ~x31

d = ~v31

e = ~x41

f = ~v41

k = bydz−bzdy

l = bzdx−bxdz

m = bxdy−bydx

n = aydz−azdy +bycz−bzcy

o = azdx−axdz+bzcx−bxcz

p = axdy−aydx +bxcy−bycx

n = aycz−azcy

o = azcx−axcz

p = axcy−aycx

I used the Cardano’s formula described in [Weisstein ].

7 Collision Algorithm

The collision algorithm I implemented is similar to what as pro-
posed by [Bridson et al. 2002], so following is just a brief descrip-
tion. It is composed of two stages. The first stage try to prevent
collision from happening, and the second stage deal with actual
geometric collisions. This two-stage approach has the advantage of
elliminating almost all collision in the first stage, leaving only a few
collision for the second stage, which is more expensive. Following
is a brief description.
The velocity used for the collision computation is the average ve-

locity, which is
v̄n+1/2 = (x̄n+1−xn)/∆t

wherexn is the position of the particle at the beginning of the time
step, andxn+1 is the candidate particle position at the end of the
time step, computed by the cloth internal dynamics.

7.1 Proximity detection and response

To detect proximity we first update the AABB tree, expanding the
bounding box to consider the thickness of the cloth. Then we check
for collision between cloth AABB tree and the other AABB trees
in the scene. The leafs of intersecting bounding boxes are checked
for proximity. Following the algorithm looks for self intersection,
looking for intersecting bounding boxes inside the cloth tree. When
a proximity is detected two kinds of response are applied:
Inelastic impulse. If a proximity is detected, and if the points are

approaching, I stop the imminent collision applying a inelastic im-
pulse in the normal direction.
Spring based repulsion force. A impulse in the normal direction is
applied to close points. This impulse is proportional to the overlap
of the objects.

7.2 Geometric collision detection and response

To detect geometric collision the AABB tree is updated in order to
have the bounding boxes wraping the volume cointaining a trian-
gle at the beginning and at the end of the time step. The geometric
collision test is performed for intersecting bounding boxes, and the
time t of the possible collision is computed.

The positions are projected fort, using the average velocity. The
proximity tests are performed for these points, using a small thick-
ness to account for rounding error.

8 Results

Overall I was very happy with the results I obtained from this
project. Following are some images from the simulation.

Figure 6: No self collision(top)and self collision(bottom).

Figure 7: Cloth falling on a table.



9 Future Work

As future work I plan to implement all sugestions from [Bridson
et al. 2002], which includes friction, limiting strain using the veloc-
ity method, and a correct computation of the final velocity (using
conjugate gradient method).

As mentioned in section 3.4 my choice of cloth model is the re-
sposive model, so I plan to fully implement it and integrate it with
the collision algorithm.

9.1 Future improvements.

9.1.1 AABB tree

I found that testing for self-collision was extremely slow. I believe
that the problem is in unnecessary tests of adjacent triangles. I
believe there is space for improvement in the construction of the
AABB trees.

One way of improving this would be to further investigate the
way of grouping triangles described by [Volino and Magnenat-
Thalmann 2000], which I believe could result in a more efficient
structure.

Another idea for improvement is illustrated by figure 8. During
collision detection I check for intersecting bounding boxes. The
bounding boxes of the red and blue triangle will always intersect,
resulting in an enourmous number of unnecessary collision testing.
If these triangles had the same bounding box these tests could be
substituted for a simplier collision test (something like a normal-
based test).

Figure 8: AABB tree construction. Red and blue triangles should
have same bounding box.

9.1.2 Geometric collision test

I plan to further investigate a better way of checking for geomet-
ric collision. Professor Steve Rotemberg suggested testing point-
triangle geometric collisions by making the triangle stationary, cre-
ating a triangle space, and projecting the point initial and final po-
sitions in this space. A collision would be detected if the the point
initial and final positions were in oposite sides of the z-plane, for
example. I think this test could be faster than what I have imple-
mented, and I plan to further investigate it.

10 Comments

My implementation of the collision algorithm is not failsafe, but
I believe that with some small corrections I can obtain significant

improvements. Also, implementing all items listed as future work
would result in a realistic cloth animation.

References

BARAFF, D., AND WITKIN , A. 1998. Large steps in cloth simu-
lation. InSIGGRAPH ’98: Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 43–54.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
In SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 594–603.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth.
In SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 604–611.

PROVOT, X. 1995. Deformation constraints in a mass-spring model
to describe rigid cloth behavior.Graphics Interface, 147–155.

PROVOT, X. 1997. Collision and self-collision handling in cloth
model dedicated to design garment.Graphics Interface.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient
method without the agonizing pain. Tech. rep., Pittsburgh, PA,
USA.

SUNDAY, D. Distance between lines and segments with their clos-
est point of approach. Inhttp://softsurfer.com/Archive/.

VAN DEN BERGEN, G. 1997. Efficient collision detection of com-
plex deformable models using aabb trees.J. Graph. Tools 2, 4,
1–13.

VOLINO, P., AND MAGNENAT-THALMANN , N. 2000. Virtual
Clothing. Springer.

WEISSTEIN, E. W. Cubic formula. InMathWorld – A Wolfram Web
Resource, http://mathworld.wolfram.com/CubicFormula.html.


